Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Biol Macromol ; 242(Pt 4): 125190, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: covidwho-20230951

RESUMEN

Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that, because of its broad host range, poses a potential threat to public health. Here, to identify the neutralizing B-cell epitopes within the S1-CTD protein, we generated three anti-PDCoV monoclonal antibodies (mAbs). Of these, the antibody designated 4E-3 effectively neutralized PDCoV with an IC50 of 3.155 µg/mL. mAb 4E-3 and one other, mAb 2A-12, recognized different linear B-cell epitopes. The minimal fragment recognized by mAb 4E-3 was mapped to 280FYSDPKSAV288 and designated S280-288, the minimal fragment recognized by mAb 2A-12 was mapped to 506TENNRFTT513, and designated S506-513. Subsequently, alanine (A)-scanning mutagenesis indicated that Asp283, Lys285, and Val288 were the critical residues recognized by mAb 4E-3. The S280-288 epitope induces PDCoV specific neutralizing antibodies in mice, demonstrating that it is a neutralizing epitope. Of note, the S280-288 coupled to Keyhole Limpet Hemocyanin (KLH) produces PDCoV neutralizing antibodies in vitro and in vivo, in challenged piglets it potentiates interferon-γ responses and provides partial protection against disease. This is the first report about the PDCoV S protein neutralizing epitope, which will contribute to research of PDCoV-related pathogenic mechanism, vaccine design and antiviral drug development.


Asunto(s)
Epítopos de Linfocito B , Epítopos Inmunodominantes , Animales , Porcinos , Ratones , Glicoproteína de la Espiga del Coronavirus/química , Anticuerpos Neutralizantes
2.
Emerging Markets, Finance & Trade ; 58(1):82-92, 2022.
Artículo en Inglés | ProQuest Central | ID: covidwho-2305540

RESUMEN

In order to further alleviate the financing constraints on SMEs and to reduce financing costs incurred following the outbreak of COVID-19, this article introduces an innovative financial arrangement called equity for guarantee swaps (EGS), which are based on widely used credit guarantee schemes (CGS). EGS can reduce information asymmetry and increase credit to SMEs, so that they can obtain more favorable financing conditions and alleviate liquidity difficulties. This helps to reverse the adverse impact of the pandemic. More importantly, from an academic perspective EGS demonstrate Pareto improvement over CGS.

3.
Acta Veterinaria et Zootechnica Sinica ; 53(5):1587-1597, 2022.
Artículo en Chino | CAB Abstracts | ID: covidwho-1994513

RESUMEN

HEK293 cells were used as the cell model to investigate the role of human aminopeptidase N (hAPN) in the invasion of porcine deltacoronavirus (PDCoV) into human cells. The proliferation of PDCoV on HEK293 cells was firstly identified by RT-qPCR/RT-PCR. And then, hAPN knockout cell line was constructed by CRISPR/Cas9 technology and cell viability of HEK293 hAPN knockout and wild-type cells was verified by CCK-8 assay. Effect of hAPN knockout and overexpression on PDCoV replication was detected by RT-qPCR and Western blot. Meanwhile, interaction of PDCoV S protein and hAPN protein was analyzed by homology modeling and molecular docking. Results showed that PDCoV virus copies rapidly increased at 12-36 h and reached peak level at 36 h, it could propagate at least for passage 2 on HEK293 cells. There was no significant difference in cell viability between hAPN knockout cells and wild-type cells. Knockout of hAPN inhibit PDCoV replication and overexpression of hAPN enhance PDCoV replication. Homology modeling and molecular docking analysis showed S1 protein could bind hAPN domain II. Residues TYR92, THR51, THR48, PHE16 and MET14of S1 protein receptor binding motif 1 (RBM1) can form hydrogen bonds with residues PHE490, GLN531, ARG528 and SER529 of hAPN. This study indicates that hAPN plays a critical role in HEK293 cells during PDCoV infection, which provides new theoretical evidence for further studies on the mechanism of PDCoV entry into host cells and cross-species transmission.

4.
BMC Pulm Med ; 22(1): 304, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1976497

RESUMEN

BACKGROUND: Noninvasive ventilation (NIV) has been widely used in critically ill patients after extubation. However, NIV failure is associated with poor outcomes. This study aimed to determine early predictors of NIV failure and to construct an accurate machine-learning model to identify patients at risks of NIV failure after extubation in intensive care units (ICUs). METHODS: Patients who underwent NIV after extubation in the eICU Collaborative Research Database (eICU-CRD) were included. NIV failure was defined as need for invasive ventilatory support (reintubation or tracheotomy) or death after NIV initiation. A total of 93 clinical and laboratory variables were assessed, and the recursive feature elimination algorithm was used to select key features. Hyperparameter optimization was conducted with an automated machine-learning toolkit called Neural Network Intelligence. A machine-learning model called Categorical Boosting (CatBoost) was developed and compared with nine other models. The model was then prospectively validated among patients enrolled in the Cardiac Surgical ICU of Zhongshan Hospital, Fudan University. RESULTS: Of 929 patients included in the eICU-CRD cohort, 248 (26.7%) had NIV failure. The time from extubation to NIV, age, Glasgow Coma Scale (GCS) score, heart rate, respiratory rate, mean blood pressure (MBP), saturation of pulse oxygen (SpO2), temperature, glucose, pH, pressure of oxygen in blood (PaO2), urine output, input volume, ventilation duration, and mean airway pressure were selected. After hyperparameter optimization, our model showed the greatest accuracy in predicting NIV failure (AUROC: 0.872 [95% CI 0.82-0.92]) among all predictive methods in an internal validation. In the prospective validation cohort, our model was also superior (AUROC: 0.846 [95% CI 0.80-0.89]). The sensitivity and specificity in the prediction group is 89% and 75%, while in the validation group they are 90% and 70%. MV duration and respiratory rate were the most important features. Additionally, we developed a web-based tool to help clinicians use our model. CONCLUSIONS: This study developed and prospectively validated the CatBoost model, which can be used to identify patients who are at risk of NIV failure. Thus, those patients might benefit from early triage and more intensive monitoring. TRIAL REGISTRATION: NCT03704324. Registered 1 September 2018, https://register. CLINICALTRIALS: gov .


Asunto(s)
Aprendizaje Automático , Ventilación no Invasiva , Insuficiencia Respiratoria , Extubación Traqueal , Humanos , Unidades de Cuidados Intensivos , Ventilación no Invasiva/métodos , Oxígeno , Reproducibilidad de los Resultados , Respiración Artificial , Insuficiencia Respiratoria/etiología , Insuficiencia Respiratoria/terapia
5.
Healthcare (Basel) ; 10(8)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1957272

RESUMEN

Affected by the normalization of the COVID-19 pandemic, people's lives are subject to many restrictions, and they are under enormous psychological and physical pressure. In this situation, health information may be a burden and cause of anxiety for people; thus, the refusal of health information occurs frequently. Health-information-avoidance behavior has produced potential impacts and harms on people's lives. Based on more than 120,000 words of textual data obtained from semi-structured interviews, summarizing a case collection of 55 events, this paper explores the factors and how they combine to lead to avoidance of health information. First, the influencing factors are constructed according to the existing research, and then the fuzzy set qualitative comparative analysis (fsQCA) method is used to discover the configuration relationship of health-information-avoidance behavior. The results show that the occurrence of health-information avoidance is not the result of a single factor but the result of a configuration of health-information literacy, negative emotions, perceived information, health-information presentation, cross-platform distribution, and the network information environment. These findings provide inspiration for reducing the adverse consequences of avoiding health information and improving the construction of health-information service systems.

6.
Acta Microbiologica Sinica ; 2:672-685, 2022.
Artículo en Chino | CAB Abstracts | ID: covidwho-1841702

RESUMEN

[Objective] To explore whether porcine deltacoronavirus (PDCoV) can infect and proliferate in different animal species-derived cell lines. [Methods] The Sichuan isolate CHN-SC2015of PDCoV was inoculated in twelve cell lines derived from hamster,poultry,monkey, human and swine. After at least five blindly passages in each cell line, the virus was identified by RT-PCR,RT-q PCR, indirect immunofluorescence assay (IFA), and sequencing. [Results] PDCoV caused distinct cytopathic effect (CPE) in Vero,PAM,PK15,ST, and LLC-PK1 cells at the 1st passage (P1) and proliferated to various degrees in PAM,PK15,ST, and LLC-PK1 cells, while the CPE gradually disappeared during subsequent passages in Vero and PAM cells. Except that in the three susceptible cell lines (PK15,LLC-PK1, and ST), the viral copies of the infected cell lines gradually decreased with the increase in passages, and PDCoV could not be detected at P4 or P5 of DEF,Marc-145,HEK-293,ZYM-SIEC02, and PAM cells. PCR results showed that PDCoV could be detected only in CEF and Vero cells at P5. The IFA results showed that PDCoV could infect other cell lines except BHK-21 and ZYM-SIEC02, and specific immunofluorescence was observed in PK15,LLC-PK1, and ST cells at P1,P3, and P9. Therefore, only three cell lines (PK15,LLC-PK1, and ST) were suitable for serial passage, with the virus titers up to 107.11,107.00, and 107.37 TCID50/mL at P9,respectively. After passage in different cell lines,CHN-SC2015 accumulated 14 nucleotide mutations corresponding to 12 amino acid mutations. [Conclusion] This study indicates that PDCoV can infect a variety of cells in vitro, suggesting that it may have the potential of cross-species transmission.

7.
Frontiers in microbiology ; 13, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1837950

RESUMEN

Canine coronavirus (CCoV) and feline coronavirus (FCoV) are endemic in companion animals. Due to their high mutation rates and tendencies of genome recombination, they pose potential threats to public health. The molecular characteristics and genetic variation of both CCoV and FCoV have been thoroughly studied, but their origin and evolutionary dynamics still require further assessment. In the present study, we applied a comprehensive approach and analyzed the S, M, and N genes of different CCoV/FCoV isolates. Discriminant analysis of principal components (DAPC) and phylogenetic analysis showed that the FCoV sequences from Chinese isolates were closely related to the FCoV clusters in Netherlands, while recombination analysis indicated that of S N-terminal domain (NTD) was the most susceptible region of mutation, and recombination of this region is an important cause of the emergence of new lineages. Natural selection showed that CCoV and FCoV subgenotypes were in selection constraints, and CCoV-IIb was in strong positive selection. Phylodynamics showed that the mean evolution rate of S1 genes of CCoV and FCoV was 1.281 × 10–3 and 1.244 × 10–3 subs/site/year, respectively, and the tMRCA of CCoV and FCoV was about 1901 and 1822, respectively. Taken together, our study centered on tracing the origin of CCoV/FCoV and provided ample insights into the phylogeny and evolution of canine and feline coronaviruses.

8.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1760651

RESUMEN

PDCoV is an emerging enteropathogenic coronavirus that mainly causes acute diarrhea in piglets, seriously affecting pig breeding industries worldwide. To date, the molecular mechanisms of PDCoV-induced immune and inflammatory responses or host responses in LLC-PK cells in vitro are not well understood. HSP90 plays important roles in various viral infections. In this study, HSP90AB1 knockout cells (HSP90AB1KO) were constructed and a comparative transcriptomic analysis between PDCoV-infected HSP90AB1WT and HSP90AB1KO cells was conducted using RNA sequencing to explore the effect of HSP90AB1 on PDCoV infection. A total of 1295 and 3746 differentially expressed genes (DEGs) were identified in PDCoV-infected HSP90AB1WT and HSP90AB1KO cells, respectively. Moreover, most of the significantly enriched pathways were related to immune and inflammatory response-associated pathways upon PDCoV infection. The DEGs enriched in NF-κB pathways were specifically detected in HSP90AB1WT cells, and NF-κB inhibitors JSH-23, SC75741 and QNZ treatment reduced PDCoV infection. Further research revealed most cytokines associated with immune and inflammatory responses were upregulated during PDCoV infection. Knockout of HSP90AB1 altered the upregulated levels of some cytokines. Taken together, our findings provide new insights into the host response to PDCoV infection from the transcriptome perspective, which will contribute to illustrating the molecular basis of the interaction between PDCoV and HSP90AB1.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Deltacoronavirus , Perfilación de la Expresión Génica , Proteínas HSP90 de Choque Térmico/genética , Inmunidad/genética , Enfermedades de los Porcinos/etiología , Transcriptoma , Animales , Biología Computacional/métodos , Susceptibilidad a Enfermedades , Técnicas de Silenciamiento del Gen , Ontología de Genes , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , FN-kappa B/metabolismo , Porcinos
9.
Chin Med J (Engl) ; 133(9): 1039-1043, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1722619

RESUMEN

BACKGROUND: A patient's infectivity is determined by the presence of the virus in different body fluids, secretions, and excreta. The persistence and clearance of viral RNA from different specimens of patients with 2019 novel coronavirus disease (COVID-19) remain unclear. This study analyzed the clearance time and factors influencing 2019 novel coronavirus (2019-nCoV) RNA in different samples from patients with COVID-19, providing further evidence to improve the management of patients during convalescence. METHODS: The clinical data and laboratory test results of convalescent patients with COVID-19 who were admitted to from January 20, 2020 to February 10, 2020 were collected retrospectively. The reverse transcription polymerase chain reaction (RT-PCR) results for patients' oropharyngeal swab, stool, urine, and serum samples were collected and analyzed. Convalescent patients refer to recovered non-febrile patients without respiratory symptoms who had two successive (minimum 24 h sampling interval) negative RT-PCR results for viral RNA from oropharyngeal swabs. The effects of cluster of differentiation 4 (CD4)+ T lymphocytes, inflammatory indicators, and glucocorticoid treatment on viral nucleic acid clearance were analyzed. RESULTS: In the 292 confirmed cases, 66 patients recovered after treatment and were included in our study. In total, 28 (42.4%) women and 38 men (57.6%) with a median age of 44.0 (34.0-62.0) years were analyzed. After in-hospital treatment, patients' inflammatory indicators decreased with improved clinical condition. The median time from the onset of symptoms to first negative RT-PCR results for oropharyngeal swabs in convalescent patients was 9.5 (6.0-11.0) days. By February 10, 2020, 11 convalescent patients (16.7%) still tested positive for viral RNA from stool specimens and the other 55 patients' stool specimens were negative for 2019-nCoV following a median duration of 11.0 (9.0-16.0) days after symptom onset. Among these 55 patients, 43 had a longer duration until stool specimens were negative for viral RNA than for throat swabs, with a median delay of 2.0 (1.0-4.0) days. Results for only four (6.9%) urine samples were positive for viral nucleic acid out of 58 cases; viral RNA was still present in three patients' urine specimens after throat swabs were negative. Using a multiple linear regression model (F = 2.669, P = 0.044, and adjusted R = 0.122), the analysis showed that the CD4+ T lymphocyte count may help predict the duration of viral RNA detection in patients' stools (t = -2.699, P = 0.010). The duration of viral RNA detection from oropharyngeal swabs and fecal samples in the glucocorticoid treatment group was longer than that in the non-glucocorticoid treatment group (15 days vs. 8.0 days, respectively; t = 2.550, P = 0.013) and the duration of viral RNA detection in fecal samples in the glucocorticoid treatment group was longer than that in the non-glucocorticoid treatment group (20 days vs. 11 days, respectively; t = 4.631, P < 0.001). There was no statistically significant difference in inflammatory indicators between patients with positive fecal viral RNA test results and those with negative results (P > 0.05). CONCLUSIONS: In brief, as the clearance of viral RNA in patients' stools was delayed compared to that in oropharyngeal swabs, it is important to identify viral RNA in feces during convalescence. Because of the delayed clearance of viral RNA in the glucocorticoid treatment group, glucocorticoids are not recommended in the treatment of COVID-19, especially for mild disease. The duration of RNA detection may relate to host cell immunity.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/genética , Neumonía Viral/genética , ARN Viral/genética , Adulto , Anciano , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/rehabilitación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/rehabilitación , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos , SARS-CoV-2
10.
Vet Microbiol ; 266: 109333, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1629002

RESUMEN

Porcine deltacoronavirus (PDCoV) is an enteropathogen found in many pig producing countries. It can cause acute diarrhea, vomiting, dehydration, and death in newborn piglets, seriously affecting the development of pig breeding industries. To date, our knowledge of the pathogenesis of PDCoV and its interactions with host cell factors remains incomplete. Using Co-IP coupled with LC/MS-MS, we identified 67 proteins that potentially interact with PDCoV in LLC-PK1 cells; five of the identified proteins were chosen for further evaluation (IMMT, STAT1, XPO5, PIK3AP1, and TMPRSS11E). Five LLC-PK1 cell lines, each with one of the genes of interest knocked down, were constructed using CRISPR/cas9. In these knockdown cells lines, only STAT1KD resulted in a significantly greater virus yield. Knockdown of the remaining four genes resulted, to varying degrees, in a lower virus yield that wild-type LLC-PK1 cells. The absence of STAT1 did not significantly affect the attachment of PDCoV to cells, but did result in increased viral internalization. Additionally, PDCoV infection stimulated expression of interferon stimulated genes (ISGs) downstream of STAT1 (IFIT1, IFIT2, RADS2, ISG15, MX1, and OAS1) while knockdown of STAT1 resulted in a greater than 80 % decrease in the expression of all six ISGs. Our findings show that STAT1 interacts with PDCoV, and plays a negative regulatory role in PDCoV infection.


Asunto(s)
Infecciones por Coronavirus , Enfermedades de los Porcinos , Animales , Infecciones por Coronavirus/veterinaria , Interferones , Células LLC-PK1 , Porcinos , Internalización del Virus
11.
Emerging Markets Finance and Trade ; : 1-11, 2021.
Artículo en Inglés | Taylor & Francis | ID: covidwho-1462096
12.
Biotechnol J ; 16(6): e2100040, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1086281

RESUMEN

Detection of pathogens with single-nucleotide variations is indispensable for the disease tracing, but remains technically challenging. The D614G mutation in the SARS-CoV-2 spike protein is known to markedly enhance viral infectivity but is difficult to detect. Here, we report an effective approach called "synthetic mismatch integrated crRNA guided Cas12a detection" (symRNA-Cas12a) to detect the D614 and G614 variants effectively. Using this method, we systemically screened a pool of crRNAs that contain all the possible nucleotide substitutions covering the -2 to +2 positions around the mutation and identify one crRNA that can efficiently increase the detection specificity by 13-fold over the ancestral crRNA. With this selected crRNA, the symRNA-Cas12a assay can detect as low as 10 copies of synthetic mutant RNA and the results are confirmed to be accurate by Sanger sequencing. Overall, we have developed the symRNA-Cas12a method to specifically, sensitively and rapidly detect the SARS-CoV-2 D614G mutation.


Asunto(s)
COVID-19 , ARN Guía de Kinetoplastida , Sistemas CRISPR-Cas , Humanos , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
13.
J Nanobiotechnology ; 19(1): 33, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1054825

RESUMEN

BACKGROUND: The outbreak and pandemic of coronavirus SARS-CoV-2 caused significant threaten to global public health and economic consequences. It is extremely urgent that global people must take actions to develop safe and effective preventions and therapeutics. Nanobodies, which are derived from single­chain camelid antibodies, had shown antiviral properties in various challenge viruses. In this study, multivalent nanobodies with high affinity blocking SARS-CoV-2 spike interaction with ACE2 protein were developed. RESULTS: Totally, four specific nanobodies against spike protein and its RBD domain were screened from a naïve VHH library. Among them, Nb91-hFc and Nb3-hFc demonstrated antiviral activity by neutralizing spike pseudotyped viruses in vitro. Subsequently, multivalent nanobodies were constructed to improve the neutralizing capacity. As a result, heterodimer nanobody Nb91-Nb3-hFc exhibited the strongest RBD-binding affinity and neutralizing ability against SARS-CoV-2 pseudoviruses with an IC50 value at approximately 1.54 nM. CONCLUSIONS: The present study indicated that naïve VHH library could be used as a potential resource for rapid acquisition and exploitation of antiviral nanobodies. Heterodimer nanobody Nb91-Nb3-hFc may serve as a potential therapeutic agent for the treatment of COVID-19.


Asunto(s)
Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sitios de Unión , Células HEK293 , Humanos , Pruebas de Neutralización , Unión Proteica , Dominios Proteicos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores
14.
Viruses ; 12(10)2020 10 14.
Artículo en Inglés | MEDLINE | ID: covidwho-905965

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Sequencing the viral genome as the outbreak progresses is important, particularly in the identification of emerging isolates with different pathogenic potential and to identify whether nucleotide changes in the genome will impair clinical diagnostic tools such as real-time PCR assays. Although single nucleotide polymorphisms and point mutations occur during the replication of coronaviruses, one of the biggest drivers in genetic change is recombination. This can manifest itself in insertions and/or deletions in the viral genome. Therefore, sequencing strategies that underpin molecular epidemiology and inform virus biology in patients should take these factors into account. A long amplicon/read length-based RT-PCR sequencing approach focused on the Oxford Nanopore MinION/GridION platforms was developed to identify and sequence the SARS-CoV-2 genome in samples from patients with or suspected of COVID-19. The protocol, termed Rapid Sequencing Long Amplicons (RSLAs) used random primers to generate cDNA from RNA purified from a sample from a patient, followed by single or multiplex PCRs to generate longer amplicons of the viral genome. The base protocol was used to identify SARS-CoV-2 in a variety of clinical samples and proved sensitive in identifying viral RNA in samples from patients that had been declared negative using other nucleic acid-based assays (false negative). Sequencing the amplicons revealed that a number of patients had a proportion of viral genomes with deletions.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , ADN Complementario/análisis , ADN Complementario/genética , ADN Viral/análisis , ADN Viral/genética , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Epidemiología Molecular , Reacción en Cadena de la Polimerasa Multiplex , Pandemias , Neumonía Viral/diagnóstico , ARN Viral/análisis , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2 , Análisis de Secuencia
15.
researchsquare; 2020.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-95737.v1

RESUMEN

Background: Frontline clinicians working in the emergency department (ED) were at disportionate risk of workplace violence (WPV). This study investigated the prevalence of WPV and its association on quality of life (QOL) among this population in China during the COVID-19 pandemic.Results: The overall prevalence of WPV was 29.2% (95%CI: 26.5%-31.9%). Multiple logistic regression analysis revealed that having family/friends/colleagues infected with COVID-19 (OR=1.81, P=0.01), current smoking status (OR=3.24, P<0.01) and severity of anxiety symptoms (OR=1.13, P<0.01) were positively associated with WPV.  Working in inpatient ED units (OR=0.45, P<0.01) was negatively associated with WPV. After controlling for covariates, clinicians experiencing WPV had a lower overall QOL compared to those without (F (1, 1103) =14.2, P<0.01).Conclusions: Prevalence of workplace violence was common among ED clinicians in China during the COVID-19 pandemic. Considering the negative impact of WPV on QOL and care quality, timely preventive measures should be undertaken for ED clinicians.


Asunto(s)
COVID-19 , Trastornos de Ansiedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA